TRANSPARENT SINGLE LAYER METAL OXIDE COATINGS ON FLEXIBLE POLYMER FILMS FOR HIGH PERMEATION BARRIER APPLICATIONS

Patrick Schlenz¹, Valentijn J.J. Von Morgen², Leopold Moimeaux³

¹Fraunhofer FEP, Germany

²DuPont Teijin Films UK Ltd, UK

³ASCA SAS, France

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952911

Motivation

\rightarrow Large area opto electronic devices

Why functional polymer films?

- reduce module weight from > 20 kg/m² to < 1 kg/m²
- Energy saving manufacturing
- Simplified installation
- Allowing more freedom in design

offen/public

© Fraunhofer FEP

Challenge: What are the requirements?

offen/public

Fraunhofer

Permeation rates – applications vs. requirements

Water vapor transmission rate (WVTR)

Quantity of water vapour (m_{H2O}) that permeates the sample material per unit of time (t) and area (A)

Important choice: the substrate material

Typical substrate defects

- ZTO Zinc Tin Oxide (state of the art material)
- Melinex[®] PCS peelable clean surface
- 100 μm PET Melinex + 25 μm protective liner film

Special feature: Protective films

Pilot web coater *coFlex*[®] 600

Aim:

- protect film surface until coating
- instantly add another protective liner film (PL) after coating
- liner adheres well to the coating and gives a robust barrier solution
- liner can be considered as an encapsulant

DuPont Teijin Films 🛛 🖉 Fraunhofer

Special feature: Protective films

- PL protects the deposited layer from roller contact
- Otherwise the layer would be damaged
- Results in an increase in WVTR
- Enables single layer solution Reduces
 production costs

offen/public

© Fraunhofer FEP

[1] M. Ehrhardt, Optimierung von Zink-Zinn-Oxid Barriereschichten für organische Photovoltaik durch Variation des Beschichtungsprozesses, diploma thesis, 2022

ZTO: Not quite perfect barrier material

- IEC 61730: Safety qualification for photovoltaic modules
- OPV Module has to be submitted to 6 kV for 60 s with no sign of insulation breakdown during the test

OPV Modules with Melinex[®] PCS + ZTO do not pass the test: Arc failures, sparkling due to a too high leakage current

Oxide layer	Surface tracking
ZTO	Fail @ 6kV
AlO _x	PASS @ 6kV
SiAlO _x N _y	PASS @ 6kV

ZTO has a low residual conductivity

ZTO: Not quite perfect barrier material

- Lower transmittance leads to lower solar cell outputs
- Depending on layer thickness* and reactive gas composition

*Comparison of layers with WVTR in the same order of magnitude

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952911

New barrier material AlSiO_xN_y: It works, but why?

- Target: AISi₅₀
- Gas Composition $O_2:N_2 = 3:1$
- WVTR = $8.0 \cdot 10^{-4} \text{ g/(m^2 \cdot d)}$
- T_{vis} = 89.6 %
- Life time in Damp Heat Test (85°C / 85% r.h.) = 2800h

offen/public

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952911

Oxide barriers – qualitative overview

optical properties* %Si 100 75 50 25 0 1:0 O₂:N₂ 3:1 1:1 1:3 0:1 0 25 50 75 100 %Al WVTR* %Si 100 75 50 25 0 1:0 O₂:N₂ 3:1 1:1 1:3 0:1 25 50 75 100 0 %AI

ZTO barrier layer deposition (reference)

- Deposition of different SiAlO_xN_y modifications
 - Why a 4 component material system?
 - Other properties are important for application
 - Ductility and crack resistance improve with AI content
 - Process stability
 - 4 component system is necessary
 - First Step: Understand 3 component system

*Only qualitative statements possible. Many trials on different substrates.

It is a single layer, but...

- SiO_xN_y : used gas composition $O_2:N_2 = 1:1$
- Optical simulation as 5 layer system

- max. in nitrogen content
- areas with high plasma density and close proximity to the target during coating
- max. in oxygen content
- when the degree of coverage increases at the selected operating point

offen/public

© Fraunhofer FEP

[2] A. Himmler et al: Roll-to-roll deposition of silicon oxynitride layers on polymer films using a rotatable dual magnetron system: Surface and Coatings Technology 336, 2018, 123-127

Process scaling: Engineering vs. Science

- Technically feasible requirements are achieved
- Engineering question: Deposition time of $AISiO_xN_y$ is higher than of ZTO \rightarrow Process time optimization
- Next Step: work with 2 Double Magnetron systems simultaneously
- Scientific questions:
 - \rightarrow Deeper investigations of the coatings
 - \rightarrow Creates an interface between the "layers"?
 - \rightarrow What influence does this have on the WVTR and optical properties?
- Engineering question: More process optimization

THANK YOU FOR LISTENING

Dipl.-Ing. Patrick Schlenz Fraunhofer FEP Winterbergstraße 28, 01277 Dresden, Germany Tel: +49 351 2586 115, patrick.schlenz@fep.fraunhofer.de www.fep.fraunhofer.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952911

Next Event: DPG Spring Meeting, Thursday, 30 March, 10:00, Session DS 13.21 LARGE AREA FUNCTIONAL THIN FILM PROPERTIES MAPPING USING IN-LINE HYPERSPECTRAL IMAGING DURING ROLL-TO-ROLL MAGNETRON SPUTTER DEPOSITION

P. Schlenz¹, F. Gruber², J. Hernandez³, C. Sternemann⁴ and S. Cornelius¹

¹Fraunhofer FEP, Germany

²Fraunhofer IWS, Germany

³Norsk Elektro Optikk AS, Norway

⁴Delta Technische Universität Dortmund, Germany

offen/public

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862055.

