What about stability in the OPV industrialization process?

Dr. Charline Arrivé

RDI Project Manager

ISOS Conference- 29/09/22

Catch the light Power your design

ASCA Presentation

We are ASCA

Flexibility of an agile structure

60 talents between France and Germany Half engineers, half dreamers, we transform lives with energy for the better.

Strength of an industrial leader

ASCA is the world leader in organic photovoltaics Industrial European capacity of 1M m² 10 years of R&D

Subsidiary of the ARMOR GROUP

An international industrial group Expertise in ink formulation & high precision coating on thin films

Maximize the use of solar energy

ASCA develops and manufactures **environmentally friendly customized solar solutions** on an industrial scale.

Thanks to its unique characteristics, the ASCA[®] solutions can render almost any surface energy-active.

They can be adapted to any shape or material, enabling new applications for solar that previously seemed impossible.

OPV Production at ASCA

Late-Stage Customization Approach

7

Free form production

Key markets

A wide range of possible applications:

Architecture

BIPV solutions integrated into the building envelope for sustainable architecture

Iconic buildings, textile & ephemeral structure, street furniture, residential building

Electronics

Energy harvesting solutions to power connected objects with ambient light

Smart cities, smart agriculture, home automation, health, asset tracking, wearables, Lifi

Mobility

Providing access to energy in mobile situations

Soft mobility, automotive, aeronautics, boating, nomadic accessories

Art & Fashion

Multi-faceted energy solutions to explore new creative territories

Luxury goods, design objects, clothing /textiles, shoes, handbags/luggage, Art...

Architecture

Potential of solarizable area (million m²)

Références

- SUPSI, Building integrated photovoltaics Status report 2020
- PV Boost, Update on BIPV market October 2018
- Osseweijer, Van den Hurk, Teunissen, Van Sark, Elsevier, A comparative review of building integrated photovoltaics ecosystems in selected European countries – 2018
- Defaix, van Sark, Worrell, de Visser Elsevier, Technical potential for photovoltaics on buildings in the EU-27,- June 2011

Novartis Pavillon – Self-powered media facade - 2021

1 25 1 2 2 3

-

11 II II I

T-STOR

as works in a first

Novartis Pavillon – Self-powered media facade - 2021

-

0

0

0

What about stability in the OPV industrialization process?

BOOSTER Project

Boost Of Organic Solar Technology for European Radiance

BOOSTER project start	September 2020
BOOSTER project duration	48 month
Project call	Next generation of thin-film PV technologies

BOOSTER

Objectives: Produce 2 BAPV demonstrators with improved lifetime and efficiency and monitore their performances for 1 year.

R2S installation on a canopy in ENI site – 150m²

Stability a stepwise approach

Stability: a stepwise equation

Materials selection

Electro

		Specifications		
	Specifications			
D Electrode Transport Layer	Non toxic, n solvent)	on harmul, no dangerous for environment (green		
	Available in industrial quantity at reasonable cost			
	Batch to Batch reproducible			
	Compatible with R2R and wet process: low drying temperature (<120°C) and short drying time (< 2 min)			
Degradation Conditions		Selection criteria		
Air/light exposure Dark storage in N2 Photo-degradation in N2		No PCE loss after 8 to 10 h in air		
		No degradation for months of storage		
		PCE loss < 10% after 1000h		
Dark Heat treatment at	120°C	No loss up to 2h heat treatment		
	Compatibility with industrial scale up Degradation Condition Air/light exposure Dark storage in N2 Photo-degradation in N Dark Heat treatment at	Compatibility with industrial scale upNon toxic, r solvent)Available in Batch to Bar Compatible (<120°C) andDegradation ConditionsAir/light exposureDark storage in N2Photo-degradation in N2Dark Heat treatment at 120°C		

Compatibility of Solution Processed HTL

Compatibility of Solution Processed HTL + Printed Top Electrode

Catch the light

Power vour design

Photostability

Ag NW **BOOSTER HTL BOOSTER ACT BOOSTER ETL PET/ITO**

Ag NW is a promising Printed top electrode: ✓ PCE loss after 200h of Light soaking<20%

Printed Ag

- Reproducibility and close to 7% on R2R scale
- PCE maintained up to 6.8 % after 1000 hrs of continuous light exposure
- \rightarrow Transfer to production scale and commercial availability by end of 2022

Next generation encapsulation developed in **BOOSTER** project

Screen Printed Ag ASCA HTL Active layer

Backsheet

Electron Transport Layer PET/TCO

Front Sheet

Catch the light Power your design

Adhesive

Requirement for	T
compatibility with	Т
lamination process	

	Item	Target
Requirement for performance stability	Transparency	90 %
	UV-cut-off	380 nm
	Water vapor transmission rate	< 10 ⁻⁴ g/(m²d)
	Oxygen transmission rate	< 0.1 cm³/(m²d bar)
	Interfacial adhesion	>10 N/cm
Requirement for	Mechanical flexibility (bending radius)	< 10 cm
	Transparency at 405 nm	85 %
compatibility with	Thickness of frontsheet	60 to 200 µm
amination process	Max. Shrinkage	< 0.2 %
	Surface energy	45 nN/m

Development of BAPV: Ready to stick modules

- Damp heat stability is determined both by primary encapsulation + Integration (2nd encapsulation)

R2S on Aluminium

R2S on Glass

Conclusions

Production of stable OPV products require to

- Take into account the production and applications constrains
- Rigourously select materials to fullfill industrial requirement
- Work with components suppliers in order to improve materials properties
- Test in relevant conditions to mimic application
- Make Failure Analysis to gain knowledge about degradation mechanism
- Improve version after version

The project BOOSTER receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 952911. https://booster-opv.eu/

BOOSTER

Thanks to BOOSTER Partners

Thank you for your attention

Dr. Charline Arrivé

RDI Project Manager

ASCA +33 0 2 51 79 53 19 charline.arrive@armor-group.com

